Appendix F — Skill Assignment 6: Logistic Regression Analysis

Author

Methods Student

Published

November 13, 2024

Find Quarto themes here.

Find the sample assignment here.

F.1 Overall Discussion

F.1.1 Load Packages

library(tidyverse)
library(haven)
library(hrbrthemes)
library(survey)
library(srvyr)
library(labelled)
library(sjmisc)
library(sjPlot)
library(gmodels)
library(gtsummary)
library(skimr)
library(ggblanket)

F.1.2 Load Your Dataset

Need help? Go to chapter x in the webbook.

load("another_anes_pilot_smaller_2.RData")

F.1.3 Manage your data as needed

Need help? Go to chapter x in the webbook.

F.1.4 Final Regression Model

Need help? Go to chapter 4 in the webbook.

roe_glm <- glm(roe_recode ~ ideo5 + urbanicity2_recode + pew_religimp, data = another_anes_pilot_smaller_2, family = "binomial", weights = another_anes_pilot_smaller_2$weight)
summary(roe_glm)

Call:
glm(formula = roe_recode ~ ideo5 + urbanicity2_recode + pew_religimp, 
    family = "binomial", data = another_anes_pilot_smaller_2, 
    weights = another_anes_pilot_smaller_2$weight)

Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                       1.41299    0.34234   4.127 3.67e-05 ***
ideo5Liberal                      0.09176    0.41695   0.220    0.826    
ideo5Moderate                    -0.98755    0.34309  -2.878    0.004 ** 
ideo5Conservative                -2.86078    0.35038  -8.165 3.22e-16 ***
ideo5Very conservative           -3.48971    0.39194  -8.904  < 2e-16 ***
ideo5Not sure                     0.25586    0.74398   0.344    0.731    
urbanicity2_recodeSuburb         -0.06706    0.20903  -0.321    0.748    
urbanicity2_recodeRural          -0.16370    0.21899  -0.747    0.455    
pew_religimpSomewhat important    0.94584    0.20458   4.623 3.78e-06 ***
pew_religimpNot too important     1.54525    0.27888   5.541 3.01e-08 ***
pew_religimpNot at all important  1.47602    0.26265   5.620 1.91e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1334.70  on 1055  degrees of freedom
Residual deviance:  873.07  on 1045  degrees of freedom
  (79 observations deleted due to missingness)
AIC: 976.48

Number of Fisher Scoring iterations: 5
tbl_regression(roe_glm, exponentiate = TRUE) |>
  add_glance_source_note(
    include = c(AIC))
Characteristic OR1 95% CI1 p-value
Profile: Ideology


    Very liberal
    Liberal 1.10 0.48, 2.48 0.8
    Moderate 0.37 0.18, 0.71 0.004
    Conservative 0.06 0.03, 0.11 <0.001
    Very conservative 0.03 0.01, 0.06 <0.001
    Not sure 1.29 0.34, 6.99 0.7
Profile: Urban-rural status


    City
    Suburb 0.94 0.62, 1.41 0.7
    Rural 0.85 0.55, 1.31 0.5
Profile: Importance of religion (Pew version)


    Very important
    Somewhat important 2.57 1.73, 3.86 <0.001
    Not too important 4.69 2.74, 8.21 <0.001
    Not at all important 4.38 2.64, 7.40 <0.001
AIC = 976
1 OR = Odds Ratio, CI = Confidence Interval
tab_model(roe_glm)
  Favor/oppose-overturn Roe
v Wade
Predictors Odds Ratios CI p
(Intercept) 4.11 2.17 – 8.37 <0.001
Profile:Ideology: Liberal 1.10 0.48 – 2.48 0.826
Profile:Ideology:
Moderate
0.37 0.18 – 0.71 0.004
Profile:Ideology:
Conservative
0.06 0.03 – 0.11 <0.001
Profile:Ideology: Very
conservative
0.03 0.01 – 0.06 <0.001
Profile:Ideology: Not
sure
1.29 0.34 – 6.99 0.731
Profile:Urban-rural
status: Suburb
0.94 0.62 – 1.41 0.748
Profile:Urban-rural
status: Rural
0.85 0.55 – 1.31 0.455
Profile:Importance of
religion(Pew version):
Somewhat important
2.57 1.73 – 3.86 <0.001
Profile:Importance of
religion(Pew version):
Not too important
4.69 2.74 – 8.21 <0.001
Profile:Importance of
religion(Pew version):
Not at all important
4.38 2.64 – 7.40 <0.001
Observations 1056
R2 Tjur 0.012

F.1.5 Save your updated dataset?

Need help? Go to chapter 4 in the webbook.